Math 150, Lecture Notes- Bonds Name

Section 4.4 The Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus

You have now been introduced to the two major branches of calculus: differential
calculus (introduced with the tangent line problem) and integral calculus (introduced
with the area problem). At this point, these two problems might seem unrelated—but
there is a very close connection. The connection was discovered independently by
Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately
called the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are
inverse operations, in the same sense that division and multiplication are inverse
operations. To see how Newton and Leibniz might have anticipated this relationship,
consider the approximations shown in Figure 4.26. The slope of the tangent line was
defined using the quotient Ay/Ax (the slope of the secant line). Similarly, the area of
a region under a curve was defined using the product AyAx (the area of a rectangle).
So, at least in the primitive approximation stage, the operations of differentiation and
definite integration appear to have an inverse relationship in the same sense that
division and multiplication are inverse operations. The Fundamental Theorem of
Calculus states that the limit processes (used to define the derivative and definite
integral) preserve this inverse relationship.
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Differentiation and definite integration have an “inverse” relationship.

Figure 4.26



THEOREM 4.9 The Fundamental Theorem of Calculus

If a function f is continuous on the closed interval [a, b] and F is an antideriva-
tive of f on the interval [a, b], then

J)f(x) dx = F(b) — F(a).

The key to the proof is in writing the difference F(b) — F(a) in a convenient
form. Let A be any partition of [a, b].

a=xy<x, <x<---<x,.,<x,=b
By pairwise subtraction and addition of like terms, you can write

F(b) — F(a) = F(xn) — F(xn_l) + F(xn_l) — = F(xl) + F(xl) — F(xo)
= S[F(x) — Flx,_,)]

i=1
By the Mean Value Theorem, you know that there exists a number c; in the ith subin-
terval such that
F(x;) — F(x;_,)

F'(c;) = ; E—
1 11—

Because F'(c;) = f(c;), you can let Ax; = x; — x,_, and obtain
F(b) — F(a) = Ef(ci)Axi'
=

This important equation tells you that by repeatedly applying the Mean Value
Theorem, you can always find a collection of ¢;’s such that the constant F(b) — F(a)
is a Riemann sum of fon [a, b] for any partition. Theorem 4.4 guarantees that the limit
of Riemann sums over the partition with ||A||— 0 exists. So, taking the limit
(as |A]| = 0) produces

F(b) — F(a) = J f(x) dx. [ ]




The following guidelines can help you understand the use of the Fundamental
Theorem of Calculus.

Guidelines for Using the Fundamental Theorem of Calculus

1. Provided you can find an antiderivative of f, you now have a way to evaluate
a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the following notation
is convenient.

f o A |
= F(b) — F(a)

b

a

For instance, to evaluate [ x* dx, you can write

fﬁﬂzﬁyzz_z:ﬂ_
1

1
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3. It is not necessary to include a constant of integration C in the antiderivative
because

jubf(x) dx = |:F(x) - C]

= [F(b) + C] — [F(a) + C]
= F(b) — Fla).

b

a

Ex.1 Evaluating a Definite Integral

Evaluate each definite integral.

7
J (6x2 4+ 2x — 3) dx
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Ex.2 Evaluating a Definite Integral Involving Absolute Value

4
J(.’) — |x = 3]) dx
Evaluate 1‘




Ex.3 Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of y = x + Sin(x) , the x-axis, and the
vertical lines x =0 and x=7.

y=x+ sinx
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The Mean Value Theorem for Integrals

In Section 4.2, you saw that the area of a region under a curve is greater than the area
of an inscribed rectangle and less than the area of a circumscribed rectangle. The
Mean Value Theorem for Integrals states that somewhere “between’ the inscribed and
circumscribed rectangles there is a rectangle whose area is precisely equal to the area
of the region under the curve, as shown in Figure 4.29.

/\ Mean value rectangle:

b
)b —a) = J f(x) dx
f(©) a

a c b Figure 4.29

THEOREM 4.10 Mean Value Theorem for Integrals

If f is continuous on the closed interval [a, b], then there exists a number ¢ in
the closed interval [a, b] such that

b
j f(x) dx = f(e)(b = a).

(3 Notice that Theorem 4.10 does not specify how to determine c. It merely
guarantees the existence of at least one number ¢ in the interval. |

Ex.4 Find the value(s) of ¢ guaranteed by the Mean Value Theorem for Integrals for

3

f(x) = cos(x) over the interval [—%,E]




Average Value of a Function

The value of f(c) given in the Mean Value Theorem for Integrals is called the average
value of fon the interval [a, b].

Definition of the Average Value of a Function on an Interval

If f is integrable on the closed interval [, b], then the average value of f on
the interval is

1 b
J’ fx) dx.

b—a
y
Average value
~_ /
//\\_//
L
Average value = mf f(x) dx
| Figureas '
a b

Notice in Figure 4.31 that the area of the region under the graph of fis equal to the
area of the rectangle whose height is the average value. [ ]

To see why the average value of f is defined in this way, suppose that you
partition [a, b] into n subintervals of equal width Ax = (b — a)/n. If ¢; is any point in
the ith subinterval, the arithmetic average (or mean) of the function values at the ¢,’s
is given by

1
a, = ;[f(cl) +f(cz) + - +f(cn)]. Average of f(cy), . . ., f(c,)

By multiplying and dividing by (b — a), you can write the average as

4, = %Eﬂcﬂ(z ~) =t S

Finally, taking the limit as n — oo produces the average value of f on the interval
[a, b], as given in the definition above.



Ex.5 Finding the Average Value of a Function

Find the average value of f(x) = 3x2 — 2x on the interval [1, 4].

y
(4, 40) ("
40 -+ > x) dx =
S
30 - f) =3x2 - 2x
20 +
10 - E Average
! value = 16
(L, D |
S } L4 ] X
1 2 3 4

Figure 4.32




The Second Fundamental Theorem of Calculus

Earlier you saw that the definite integral of f on the interval [a, b] was defined using
the constant b as the upper limit of integration and x as the variable of integration.
However, a slightly different situation may arise in which the variable x is used in the
upper limit of integration. To avoid the confusion of using x in two different ways, ¢
is temporarily used as the variable of integration. (Remember that the definite integral
is not a function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x

Constant F is a function of x.

/ !
f £00) Flx) = f £0) de
a \ a \
f /

fisa fisa
Constant function of x. Constant function of .

Ex.6 The Definite Integral as a Function
Evaluate the function

F(x) = J cos t dt

0
atx = 0, 7/6, 7/4, w/3, and /2.

X X
J costdt=sint} = gsinx — sin 0 = sin x.
0 0

Now, using F(x) = sin x, you can obtain the results shown in Figure 4.34.

X
F(x) = f cos ¢ dt is the area under the curve f(r) = cos ¢ from 0 to x.
0

X
Fx) = J cos ¢ dt is the area under the curve f(1) = cos ¢ from 0 to x.
0

Figure 4.34



You can think of the function F(x) as accumulating the area under the curve
f(t) = costfromt = 0tot = x. For x = 0, the area is 0 and F(0) = 0. For x = /2,
F(m/2) = 1 gives the accumulated area under the cosine curve on the entire interval
[0, 7r/2]. This interpretation of an integral as an accumulation function is used often
in applications of integration.

In Example 6, note that the derivative of F is the original integrand (with only the
variable changed). That is,

d de. _d[[" _

e [F(x)] = e [sin x] = e [Jo Ccos tdt] COS X.
This result is generalized in the following theorem, called the Second Fundamental
Theorem of Calculus.

THEOREM 4.11 The Second Fundamental Theorem of Calculus

If f is continuous on an open interval / containing a, then, for every x in the
interval,

4 [ f ) df] = f(x).

Begin by defining F as

f)
Flx) = f 10 d. s

Then, by the definition of the derivative, you can write

, . F(x+ Ax) — F(x
F(X>ZA1}90( A; . /0

1T X+ Ax x
ZA{%%A—X_J f<’>d"ff(f)””}

a a

! JHAxf(t) dt + rf(t) dt]

lim —
Ax—0 AX | Ja x

t
X X+ Ax

x+ Ax

) A = f 1) di
1 - (x+Ax .
- Alxiglo A_x J f (t) dt]' Figure 4.35

—JX

From the Mean Value Theorem for Integrals (assuming Ax > 0), you know there
exists a number c in the interval [x, x + Ax] such that the integral in the expression
above is equal to f(c) Ax. Moreover, because x < ¢ < x + Au, it follows that ¢ — x
as Ax— 0. So, you obtain

P = fim | 5 510 8]
= i, 1

= /().

A similar argument can be made for Ax < 0. [ |



(3 Using the area model for definite integrals, you can view the approximation

x+ Ax

f(x) Ax = J f(2) dr

X

as saying that the area of the rectangle of height f(x) and width Ax is approximately equal to
the area of the region lying between the graph of fand the x-axis on the interval [x, x + Ax], as
shown in Figure 4.35. [ ]

Note that the Second Fundamental Theorem of Calculus tells you that if a func-
tion is continuous, you can be sure that it has an antiderivative. This antiderivative
need not, however, be an elementary function. (Recall the discussion of elementary
functions in Section P.3.)

Ex.7 Using the Second Fundamental Theorem of Calculus
(a) Integrate to find F(x). (b) Then, demonstrate the Second Fundamental Theorem of

Calculus to find F'(x) by differentiating your result in part (a).

F(x) = Jx t(t2 + 1) dt

0




Ex.8 Using the Second Fundamental Theorem of Calculus

Find the derivative of F(x) = j L
t.
2

Using u =
dF du
Flx) =——
() du dx
d i

[F(x)]

:E dx




Net

Change Theorem

The Fundamental Theorem of Calculus (Theorem 4.9) states that if fis continuous on

the cl

But b

osed interval [a, b] and F is an antiderivative of fon [a, b], then

ecause F’(x) = f(x), this statement can be rewritten as
rb

J

F'(x) dx = F(b) — F(a)

a

where the quantity F(b) — F(a) represents the net change of F on the interval [a, b].

THEOREM 4.12 THE NET CHANGE THEOREM

Th

change, or net change, in that quantity on the interval [a, b].

e definite integral of the rate of change of a quantity F’(x) gives the total

b
J F'(x) dx = F(b) — F(a) Net change of F

a

Ex.9 Using the Net Change Theorem

A chemical flows into a storage tank at a rate of 180 + 3¢ liters per minute, where
0 = t = 60. Find the amount of the chemical that flows into the tank during the first
20 minutes.



Another way to illustrate the Net Change Theorem is to examine the velocity of
a particle moving along a straight line where s(z) is the position at time z. Then its
velocity is v(f) = s’(t) and

J v(t) dt = s(b) — s(a).

This definite integral represents the net change in position, or displacement, of the
particle.

When calculating the toral distance traveled by the particle, you must consider the
intervals where v(f) < 0 and the intervals where v(r) = 0. When v(t) < 0, the
particle moves to the left, and when v(¢) = 0, the particle moves to the right. To
calculate the total distance traveled, integrate the absolute value of velocity |v(r)|. So,
the displacement of a particle and the total distance traveled by a particle over [a, b]
can be written as

b
Displacement on [a, b] = J v(t)dt = A, — A, + A,

a

b
Total distance traveled on [a, b] = [ |v(2)| dr = A, + A, + A,

v
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A
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Ay, A,, and A, are the areas of the shaded
regions.
Figure 4.36




Ex.10 Solving a Particle Motion Problem

A particle is moving along a line so that its velocity is v(t) =t> —8t* +15t feet per
second at time £.

(a) What is the displacement of the particle on the time interval 0 <{ <57
(b) What is the total distance traveled by the particle on the time interval 0 <{ <57




